范畴论
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\let \symnormal \mathit \)
\(\let \symliteral \mathrm \)
\(\let \symbb \mathbb \)
\(\let \symbbit \mathbb \)
\(\let \symcal \mathcal \)
\(\let \symscr \mathscr \)
\(\let \symfrak \mathfrak \)
\(\let \symsfup \mathsf \)
\(\let \symsfit \mathit \)
\(\let \symbfsf \mathbf \)
\(\let \symbfup \mathbf \)
\(\newcommand {\symbfit }[1]{\boldsymbol {#1}}\)
\(\let \symbfcal \mathcal \)
\(\let \symbfscr \mathscr \)
\(\let \symbffrak \mathfrak \)
\(\let \symbfsfup \mathbf \)
\(\newcommand {\symbfsfit }[1]{\boldsymbol {#1}}\)
\(\let \symup \mathrm \)
\(\let \symbf \mathbf \)
\(\let \symit \mathit \)
\(\let \symtt \mathtt \)
\(\let \symbffrac \mathbffrac \)
\(\newcommand {\mathfence }[1]{\mathord {#1}}\)
\(\newcommand {\mathover }[1]{#1}\)
\(\newcommand {\mathunder }[1]{#1}\)
\(\newcommand {\mathaccent }[1]{#1}\)
\(\newcommand {\mathbotaccent }[1]{#1}\)
\(\newcommand {\mathalpha }[1]{\mathord {#1}}\)
\(\def\upAlpha{\unicode{x0391}}\)
\(\def\upBeta{\unicode{x0392}}\)
\(\def\upGamma{\unicode{x0393}}\)
\(\def\upDigamma{\unicode{x03DC}}\)
\(\def\upDelta{\unicode{x0394}}\)
\(\def\upEpsilon{\unicode{x0395}}\)
\(\def\upZeta{\unicode{x0396}}\)
\(\def\upEta{\unicode{x0397}}\)
\(\def\upTheta{\unicode{x0398}}\)
\(\def\upVartheta{\unicode{x03F4}}\)
\(\def\upIota{\unicode{x0399}}\)
\(\def\upKappa{\unicode{x039A}}\)
\(\def\upLambda{\unicode{x039B}}\)
\(\def\upMu{\unicode{x039C}}\)
\(\def\upNu{\unicode{x039D}}\)
\(\def\upXi{\unicode{x039E}}\)
\(\def\upOmicron{\unicode{x039F}}\)
\(\def\upPi{\unicode{x03A0}}\)
\(\def\upVarpi{\unicode{x03D6}}\)
\(\def\upRho{\unicode{x03A1}}\)
\(\def\upSigma{\unicode{x03A3}}\)
\(\def\upTau{\unicode{x03A4}}\)
\(\def\upUpsilon{\unicode{x03A5}}\)
\(\def\upPhi{\unicode{x03A6}}\)
\(\def\upChi{\unicode{x03A7}}\)
\(\def\upPsi{\unicode{x03A8}}\)
\(\def\upOmega{\unicode{x03A9}}\)
\(\def\itAlpha{\unicode{x1D6E2}}\)
\(\def\itBeta{\unicode{x1D6E3}}\)
\(\def\itGamma{\unicode{x1D6E4}}\)
\(\def\itDigamma{\mathit{\unicode{x03DC}}}\)
\(\def\itDelta{\unicode{x1D6E5}}\)
\(\def\itEpsilon{\unicode{x1D6E6}}\)
\(\def\itZeta{\unicode{x1D6E7}}\)
\(\def\itEta{\unicode{x1D6E8}}\)
\(\def\itTheta{\unicode{x1D6E9}}\)
\(\def\itVartheta{\unicode{x1D6F3}}\)
\(\def\itIota{\unicode{x1D6EA}}\)
\(\def\itKappa{\unicode{x1D6EB}}\)
\(\def\itLambda{\unicode{x1D6EC}}\)
\(\def\itMu{\unicode{x1D6ED}}\)
\(\def\itNu{\unicode{x1D6EE}}\)
\(\def\itXi{\unicode{x1D6EF}}\)
\(\def\itOmicron{\unicode{x1D6F0}}\)
\(\def\itPi{\unicode{x1D6F1}}\)
\(\def\itRho{\unicode{x1D6F2}}\)
\(\def\itSigma{\unicode{x1D6F4}}\)
\(\def\itTau{\unicode{x1D6F5}}\)
\(\def\itUpsilon{\unicode{x1D6F6}}\)
\(\def\itPhi{\unicode{x1D6F7}}\)
\(\def\itChi{\unicode{x1D6F8}}\)
\(\def\itPsi{\unicode{x1D6F9}}\)
\(\def\itOmega{\unicode{x1D6FA}}\)
\(\def\upalpha{\unicode{x03B1}}\)
\(\def\upbeta{\unicode{x03B2}}\)
\(\def\upvarbeta{\unicode{x03D0}}\)
\(\def\upgamma{\unicode{x03B3}}\)
\(\def\updigamma{\unicode{x03DD}}\)
\(\def\updelta{\unicode{x03B4}}\)
\(\def\upepsilon{\unicode{x03F5}}\)
\(\def\upvarepsilon{\unicode{x03B5}}\)
\(\def\upzeta{\unicode{x03B6}}\)
\(\def\upeta{\unicode{x03B7}}\)
\(\def\uptheta{\unicode{x03B8}}\)
\(\def\upvartheta{\unicode{x03D1}}\)
\(\def\upiota{\unicode{x03B9}}\)
\(\def\upkappa{\unicode{x03BA}}\)
\(\def\upvarkappa{\unicode{x03F0}}\)
\(\def\uplambda{\unicode{x03BB}}\)
\(\def\upmu{\unicode{x03BC}}\)
\(\def\upnu{\unicode{x03BD}}\)
\(\def\upxi{\unicode{x03BE}}\)
\(\def\upomicron{\unicode{x03BF}}\)
\(\def\uppi{\unicode{x03C0}}\)
\(\def\upvarpi{\unicode{x03D6}}\)
\(\def\uprho{\unicode{x03C1}}\)
\(\def\upvarrho{\unicode{x03F1}}\)
\(\def\upsigma{\unicode{x03C3}}\)
\(\def\upvarsigma{\unicode{x03C2}}\)
\(\def\uptau{\unicode{x03C4}}\)
\(\def\upupsilon{\unicode{x03C5}}\)
\(\def\upphi{\unicode{x03D5}}\)
\(\def\upvarphi{\unicode{x03C6}}\)
\(\def\upchi{\unicode{x03C7}}\)
\(\def\uppsi{\unicode{x03C8}}\)
\(\def\upomega{\unicode{x03C9}}\)
\(\def\italpha{\unicode{x1D6FC}}\)
\(\def\itbeta{\unicode{x1D6FD}}\)
\(\def\itvarbeta{\unicode{x03D0}}\)
\(\def\itgamma{\unicode{x1D6FE}}\)
\(\def\itdigamma{\mathit{\unicode{x03DD}}}\)
\(\def\itdelta{\unicode{x1D6FF}}\)
\(\def\itepsilon{\unicode{x1D716}}\)
\(\def\itvarepsilon{\unicode{x1D700}}\)
\(\def\itzeta{\unicode{x1D701}}\)
\(\def\iteta{\unicode{x1D702}}\)
\(\def\ittheta{\unicode{x1D703}}\)
\(\def\itvartheta{\unicode{x1D717}}\)
\(\def\itiota{\unicode{x1D704}}\)
\(\def\itkappa{\unicode{x1D705}}\)
\(\def\itvarkappa{\unicode{x1D718}}\)
\(\def\itlambda{\unicode{x1D706}}\)
\(\def\itmu{\unicode{x1D707}}\)
\(\def\itnu{\unicode{x1D708}}\)
\(\def\itxi{\unicode{x1D709}}\)
\(\def\itomicron{\unicode{x1D70A}}\)
\(\def\itpi{\unicode{x1D70B}}\)
\(\def\itvarpi{\unicode{x1D71B}}\)
\(\def\itrho{\unicode{x1D70C}}\)
\(\def\itvarrho{\unicode{x1D71A}}\)
\(\def\itsigma{\unicode{x1D70E}}\)
\(\def\itvarsigma{\unicode{x1D70D}}\)
\(\def\ittau{\unicode{x1D70F}}\)
\(\def\itupsilon{\unicode{x1D710}}\)
\(\def\itphi{\unicode{x1D719}}\)
\(\def\itvarphi{\unicode{x1D711}}\)
\(\def\itchi{\unicode{x1D712}}\)
\(\def\itpsi{\unicode{x1D713}}\)
\(\def\itomega{\unicode{x1D714}}\)
\(\let \lparen (\)
\(\let \rparen )\)
\(\newcommand {\cuberoot }[1]{\,{}^3\!\!\sqrt {#1}}\,\)
\(\newcommand {\fourthroot }[1]{\,{}^4\!\!\sqrt {#1}}\,\)
\(\newcommand {\longdivision }[1]{\mathord {\unicode {x027CC}#1}}\)
\(\newcommand {\mathcomma }{,}\)
\(\newcommand {\mathcolon }{:}\)
\(\newcommand {\mathsemicolon }{;}\)
\(\newcommand {\overbracket }[1]{\mathinner {\overline {\ulcorner {#1}\urcorner }}}\)
\(\newcommand {\underbracket }[1]{\mathinner {\underline {\llcorner {#1}\lrcorner }}}\)
\(\newcommand {\overbar }[1]{\mathord {#1\unicode {x00305}}}\)
\(\newcommand {\ovhook }[1]{\mathord {#1\unicode {x00309}}}\)
\(\newcommand {\ocirc }[1]{\mathord {#1\unicode {x0030A}}}\)
\(\newcommand {\candra }[1]{\mathord {#1\unicode {x00310}}}\)
\(\newcommand {\oturnedcomma }[1]{\mathord {#1\unicode {x00312}}}\)
\(\newcommand {\ocommatopright }[1]{\mathord {#1\unicode {x00315}}}\)
\(\newcommand {\droang }[1]{\mathord {#1\unicode {x0031A}}}\)
\(\newcommand {\leftharpoonaccent }[1]{\mathord {#1\unicode {x020D0}}}\)
\(\newcommand {\rightharpoonaccent }[1]{\mathord {#1\unicode {x020D1}}}\)
\(\newcommand {\vertoverlay }[1]{\mathord {#1\unicode {x020D2}}}\)
\(\newcommand {\leftarrowaccent }[1]{\mathord {#1\unicode {x020D0}}}\)
\(\newcommand {\annuity }[1]{\mathord {#1\unicode {x020E7}}}\)
\(\newcommand {\widebridgeabove }[1]{\mathord {#1\unicode {x020E9}}}\)
\(\newcommand {\asteraccent }[1]{\mathord {#1\unicode {x020F0}}}\)
\(\newcommand {\threeunderdot }[1]{\mathord {#1\unicode {x020E8}}}\)
\(\newcommand {\Bbbsum }{\mathop {\unicode {x2140}}\limits }\)
\(\newcommand {\oiint }{\mathop {\unicode {x222F}}\limits }\)
\(\newcommand {\oiiint }{\mathop {\unicode {x2230}}\limits }\)
\(\newcommand {\intclockwise }{\mathop {\unicode {x2231}}\limits }\)
\(\newcommand {\ointclockwise }{\mathop {\unicode {x2232}}\limits }\)
\(\newcommand {\ointctrclockwise }{\mathop {\unicode {x2233}}\limits }\)
\(\newcommand {\varointclockwise }{\mathop {\unicode {x2232}}\limits }\)
\(\newcommand {\leftouterjoin }{\mathop {\unicode {x27D5}}\limits }\)
\(\newcommand {\rightouterjoin }{\mathop {\unicode {x27D6}}\limits }\)
\(\newcommand {\fullouterjoin }{\mathop {\unicode {x27D7}}\limits }\)
\(\newcommand {\bigbot }{\mathop {\unicode {x27D8}}\limits }\)
\(\newcommand {\bigtop }{\mathop {\unicode {x27D9}}\limits }\)
\(\newcommand {\xsol }{\mathop {\unicode {x29F8}}\limits }\)
\(\newcommand {\xbsol }{\mathop {\unicode {x29F9}}\limits }\)
\(\newcommand {\bigcupdot }{\mathop {\unicode {x2A03}}\limits }\)
\(\newcommand {\bigsqcap }{\mathop {\unicode {x2A05}}\limits }\)
\(\newcommand {\conjquant }{\mathop {\unicode {x2A07}}\limits }\)
\(\newcommand {\disjquant }{\mathop {\unicode {x2A08}}\limits }\)
\(\newcommand {\bigtimes }{\mathop {\unicode {x2A09}}\limits }\)
\(\newcommand {\modtwosum }{\mathop {\unicode {x2A0A}}\limits }\)
\(\newcommand {\sumint }{\mathop {\unicode {x2A0B}}\limits }\)
\(\newcommand {\intbar }{\mathop {\unicode {x2A0D}}\limits }\)
\(\newcommand {\intBar }{\mathop {\unicode {x2A0E}}\limits }\)
\(\newcommand {\fint }{\mathop {\unicode {x2A0F}}\limits }\)
\(\newcommand {\cirfnint }{\mathop {\unicode {x2A10}}\limits }\)
\(\newcommand {\awint }{\mathop {\unicode {x2A11}}\limits }\)
\(\newcommand {\rppolint }{\mathop {\unicode {x2A12}}\limits }\)
\(\newcommand {\scpolint }{\mathop {\unicode {x2A13}}\limits }\)
\(\newcommand {\npolint }{\mathop {\unicode {x2A14}}\limits }\)
\(\newcommand {\pointint }{\mathop {\unicode {x2A15}}\limits }\)
\(\newcommand {\sqint }{\mathop {\unicode {x2A16}}\limits }\)
\(\newcommand {\intlarhk }{\mathop {\unicode {x2A17}}\limits }\)
\(\newcommand {\intx }{\mathop {\unicode {x2A18}}\limits }\)
\(\newcommand {\intcap }{\mathop {\unicode {x2A19}}\limits }\)
\(\newcommand {\intcup }{\mathop {\unicode {x2A1A}}\limits }\)
\(\newcommand {\upint }{\mathop {\unicode {x2A1B}}\limits }\)
\(\newcommand {\lowint }{\mathop {\unicode {x2A1C}}\limits }\)
\(\newcommand {\bigtriangleleft }{\mathop {\unicode {x2A1E}}\limits }\)
\(\newcommand {\zcmp }{\mathop {\unicode {x2A1F}}\limits }\)
\(\newcommand {\zpipe }{\mathop {\unicode {x2A20}}\limits }\)
\(\newcommand {\zproject }{\mathop {\unicode {x2A21}}\limits }\)
\(\newcommand {\biginterleave }{\mathop {\unicode {x2AFC}}\limits }\)
\(\newcommand {\bigtalloblong }{\mathop {\unicode {x2AFF}}\limits }\)
\(\newcommand {\arabicmaj }{\mathop {\unicode {x1EEF0}}\limits }\)
\(\newcommand {\arabichad }{\mathop {\unicode {x1EEF1}}\limits }\)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\iddots }{\mathinner {\unicode {x22F0}}}\)
\(\let \fixedddots \ddots \)
\(\let \fixedvdots \vdots \)
\(\let \fixediddots \iddots \)
\(\let \originalddots \ddots \)
\(\let \originalvdots \vdots \)
\(\let \originaliddots \iddots \)
\(\let \originaldddot \dddot \)
\(\let \originalddddot \ddddot \)
\(\newcommand {\tcbset }[1]{}\)
\(\newcommand {\tcbsetforeverylayer }[1]{}\)
\(\newcommand {\tcbox }[2][]{\boxed {\text {#2}}}\)
\(\newcommand {\tcboxfit }[2][]{\boxed {#2}}\)
\(\newcommand {\tcblower }{}\)
\(\newcommand {\tcbline }{}\)
\(\newcommand {\tcbtitle }{}\)
\(\newcommand {\tcbsubtitle [2][]{\mathrm {#2}}}\)
\(\newcommand {\tcboxmath }[2][]{\boxed {#2}}\)
\(\newcommand {\tcbhighmath }[2][]{\boxed {#2}}\)
\(\Newextarrow \xLongleftarrow {10,10}{0x21D0}\)
\(\Newextarrow \xLongrightarrow {10,10}{0x21D2}\)
\(\Newextarrow \xLongleftrightarrow {10,10}{0x21D4}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21D4}\)
\(\Newextarrow \xlongleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\let \xlongleftarrow \xleftarrow \)
\(\let \xlongrightarrow \xrightarrow \)
\(\newcommand {\C }{ \mathbb {C} }\)
\(\newcommand {\Cc }{ \mathcal {C} }\)
\(\newcommand {\Dc }{ \mathcal {D} }\)
\(\newcommand {\Z }{ \mathbb {Z} }\)
\(\newcommand {\ra }[1]{\xrightarrow {#1}}\)
\(\DeclareMathOperator {\Sym }{Sym}\)
\(\def \id {\mathrm {id}}\)
\(\newcommand {\Q }{\mathbb {Q}}\)
\(\renewcommand {\a }{{\alpha }}\)
\(\renewcommand {\b }{{\beta }}\)
\(\def \g {\gamma }\)
\(\def \w {\omega }\)
\(\def \e {\epsilon }\)
\(\def \z {\zeta }\)
\(\def \d {\partial }\)
\(\newcommand {\tHpb }[3]{{\mathbf {\overline {2H}}^{#1}_{(#2,#3)}}}\)
\(\newcommand {\Hpb }{\mathbf {\overline {H}}}\)
\(\def \red {\textcolor {red}}\)
\(\def \green {\textcolor {green}}\)
\(\def \blue {\textcolor {blue}}\)
\(\let \symsf \symsfit \)
\(\def\Alpha{\unicode{x1D6E2}}\)
\(\def\Beta{\unicode{x1D6E3}}\)
\(\def\Gamma{\unicode{x1D6E4}}\)
\(\def\Digamma{\mathit{\unicode{x03DC}}}\)
\(\def\Delta{\unicode{x1D6E5}}\)
\(\def\Epsilon{\unicode{x1D6E6}}\)
\(\def\Zeta{\unicode{x1D6E7}}\)
\(\def\Eta{\unicode{x1D6E8}}\)
\(\def\Theta{\unicode{x1D6E9}}\)
\(\def\Vartheta{\unicode{x1D6F3}}\)
\(\def\Iota{\unicode{x1D6EA}}\)
\(\def\Kappa{\unicode{x1D6EB}}\)
\(\def\Lambda{\unicode{x1D6EC}}\)
\(\def\Mu{\unicode{x1D6ED}}\)
\(\def\Nu{\unicode{x1D6EE}}\)
\(\def\Xi{\unicode{x1D6EF}}\)
\(\def\Omicron{\unicode{x1D6F0}}\)
\(\def\Pi{\unicode{x1D6F1}}\)
\(\def\Rho{\unicode{x1D6F2}}\)
\(\def\Sigma{\unicode{x1D6F4}}\)
\(\def\Tau{\unicode{x1D6F5}}\)
\(\def\Upsilon{\unicode{x1D6F6}}\)
\(\def\Phi{\unicode{x1D6F7}}\)
\(\def\Chi{\unicode{x1D6F8}}\)
\(\def\Psi{\unicode{x1D6F9}}\)
\(\def\Omega{\unicode{x1D6FA}}\)
\(\def\alpha{\unicode{x1D6FC}}\)
\(\def\beta{\unicode{x1D6FD}}\)
\(\def\varbeta{\unicode{x03D0}}\)
\(\def\gamma{\unicode{x1D6FE}}\)
\(\def\digamma{\mathit{\unicode{x03DD}}}\)
\(\def\delta{\unicode{x1D6FF}}\)
\(\def\epsilon{\unicode{x1D716}}\)
\(\def\varepsilon{\unicode{x1D700}}\)
\(\def\zeta{\unicode{x1D701}}\)
\(\def\eta{\unicode{x1D702}}\)
\(\def\theta{\unicode{x1D703}}\)
\(\def\vartheta{\unicode{x1D717}}\)
\(\def\iota{\unicode{x1D704}}\)
\(\def\kappa{\unicode{x1D705}}\)
\(\def\varkappa{\unicode{x1D718}}\)
\(\def\lambda{\unicode{x1D706}}\)
\(\def\mu{\unicode{x1D707}}\)
\(\def\nu{\unicode{x1D708}}\)
\(\def\xi{\unicode{x1D709}}\)
\(\def\omicron{\unicode{x1D70A}}\)
\(\def\pi{\unicode{x1D70B}}\)
\(\def\varpi{\unicode{x1D71B}}\)
\(\def\rho{\unicode{x1D70C}}\)
\(\def\varrho{\unicode{x1D71A}}\)
\(\def\sigma{\unicode{x1D70E}}\)
\(\def\varsigma{\unicode{x1D70D}}\)
\(\def\tau{\unicode{x1D70F}}\)
\(\def\upsilon{\unicode{x1D710}}\)
\(\def\phi{\unicode{x1D719}}\)
\(\def\varphi{\unicode{x1D711}}\)
\(\def\chi{\unicode{x1D712}}\)
\(\def\psi{\unicode{x1D713}}\)
\(\def\omega{\unicode{x1D714}}\)
1.5 对偶原理
对于任何范畴 \(A = (O, \text {hom}_A, \text {id}, \circ )\),其对偶(或反范畴)记作 \(A^{op} = (O, \text {hom}_{A^{op}}, \text {id}, \circ ^{op})\),其中 \(\text {hom}_{A^{op}}(A, B) = \text {hom}_A(B, A)\),且 \(f \circ ^{op} g = g \circ f\)。这意味着
\(A\) 和 \(A^{op}\) 有相同的对象,唯一的不同在于它们的态射的方向。
例子:
-
1. 如果 \(A = (X, \leq )\) 是一个预序类,被视为一个范畴,那么 \(A^{op} = (X, \geq )\)。
-
2. 如果 \(A = (M, \cdot , e)\) 是一个幺半群,被视为一个范畴,那么 \(A^{op} = (M, \hat {\cdot }, e)\),其中 \(a \hat { \cdot } b = b \cdot a\)。
对偶范畴的定义方式使得任何关于 \(A^{op}\) 中对象 \(X\) 的语句 \(S_{A^{op}}(X)\) 都可以转化为关于 \(A\) 中对象 \(X\) 的逻辑等价语句 \(S^{op}_A(X)\)。这种潜在性允许将有关范畴中对象和态射的每个性质 \(P\) 关联到一个关于对象和态射的对偶性质,具体解释如下:考虑 \(A\) 中对象 \(X\)
的性质:\(P_A(X) \equiv \) 对于任何 \(A\) - 对象 \(A\),存在唯一的 \(A\) - 态射 \(f: A \to X\) (\(X\) 是一个终对象)。
步骤 1: 在 \(P_A(X)\) 中,用 \(A^{op}\) 替换所有 \(A\) 的出现,从而获得性质 \(P_{A^{op}}(X) \equiv \) 对于任何 \(A^{op}\) - 对象 \(A\),存在唯一的 \(A^{op}\) - 态射 \(f: A \to X\)。
步骤 2: 将 \(P_{A^{op}}(X)\) 转化为逻辑上等价的语句 \(P^{op}_A(X) \equiv \) 对于任何 \(A\) - 对象 \(A\),存在唯一的 \(A\) - 态射 \(f: X \to A\)。
可以观察到,粗略来说,\(P^{op}_A(X)\) 是通过颠倒 \(P_A(X)\) 中每个箭头的方向和复合态射的顺序得到的。在一般情况下,\(P^{op}_A(X)\) 与 \(P_A(X)\) 不等价。例如,上述性质 \(P_{\text {Set}}(X)\) 当且仅当 \(X\) 是一个单集时成立,而其对偶性质 \(P^{op}_{\text {Set}}(X)\) 当且仅
当 \(X\) 是空集时成立。
以类似的方式,关于范畴中态射的任何性质都会导致关于范畴中态射的对偶性质,正如以下示例所演示的:考虑 \(A\) 中态射 \(A \xrightarrow {f} B\) 的性质:\(Q_A(f) \equiv \) 在 \(A\) 中存在一个 \(A\) - 态射 \(B \xrightarrow {g} A\),使得 \(A \xrightarrow {f} B \xrightarrow {g} A
= A \xrightarrow {\text {id}_A}A\)(即,\(g \circ f = \text {id}_A\))。
步骤 1: 在 \(Q_A(f)\) 中,用 \(A^{op}\) 替换所有 \(A\) 的出现,从而获得性质 \(Q_{A^{op}}(f) \equiv \) 在 \(A^{op}\) 中存在一个 \(A^{op}\) - 态射 \(B \xrightarrow {g} A\),使得 \(A \xrightarrow {f} B \xrightarrow {g} A = A \xrightarrow {\text {id}_A}A\)(即,
\(g \circ f = \text {id}_A\))。
步骤 2: 将 \(Q_{A^{op}}(f)\) 转化为逻辑上等价的语句 \(Q^{op}_A(f) \equiv \) 在 \(A\) 中存在一个 \(A\) - 态射 \(A \xrightarrow {g} B\),使得 \(A \xrightarrow {g} B \xrightarrow {f} A = A \xrightarrow {\text {id}_A}A\)(即,\(f \circ g = \text {id}_A\))。
例如,上述性质 \(Q_{\text {Set}}(f)\) 当且仅当 \(f\) 是具有非空定义域的单射函数或是空集上的恒等映射时成立,而其对偶性质 \(Q^{op}_{\text {Set}}(f)\) 当且仅当 \(f\) 是满射函数时成立。涉及范畴中对象和态射 \(A, B, …, f, g, …\) 的更复杂的性质 \(P_A(A, B, …, f, g, …)\)
可以通过类似的方式进行对偶。如果 \(P = P_A(A, B, …, f, g, …)\) 对于所有 \(A\) - 对象 \(A, B, …\) 和所有 \(A\) - 态射 \(f, g, …\) 都成立,则我们说范畴 \(A\) 具有性质 \(P\) 或 \(P(A)\) 成立。
对偶原理指出: 每当某一性质 \(P\) 对所有范畴都成立时,那么性质 \(P^{op}\) 也对所有范畴成立 。这一(极为有用的)原理的证明立即可以从以下事实得出,对于所有范畴 A 和性质 P:
例如,考虑性质 \(R = R_A(f)\) 的定义:如果 \(P_A(dom(f))\) 成立,则 \(Q_A(f)\) 成立,其中 P 和 Q 是上文定义的性质。很容易证明对于所有范畴 A,\(R(A)\) 都成立,因此根据对偶原理,\(R^{op}(A)\) 对于所有范畴 A 都成立,其中 \(R^{op}_A(f)\) 的定义为:如果 \(P^{op}_A(cod(f))\),
则 \(Q^{op}_A(f)\) 成立。
由于这一原理,范畴论中的每个结果都有两种等价的表述(乍看起来可能非常不同)。然而,只需要证明其中一个,因为根据对偶原理,另一个是自动成立的。
通常,概念 \(P\) 的对偶概念 \(P^{op}\) 被表示为”co-P”(例如,等值器和余等值器,良构和共良构,积和余积等等)。如果 \(P\) 等于 \(P^{op}\),则概念 \(P\) 被称为自对偶。一个例子是” 恒等态射” 的概念。